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Abstract 1A -

This paper discusses some aspects of the design of a data distributed, massively parallel
volume rendering library for runtime visualization of parallel computational fluid dynamics
simulations in a message-passing environment. Unlike the traditional scheme in which vi-
sualization is a postprocessing step, the rendering is done in place on each node processor.
Computational scientists who run large-scale simulations on a massively parallel computer
can thus perform interactive monitoring of their simulations. The current library provides
an interface to handle volume data on rectilinear grids. The same design principles can
be generalized to handle other types of grids. For demonstration, we run a parallel Navier-
Stokes solver making use of this rendering library on the Intel Paragon XP/S. The interactive
visual response achieved is found to be very useful. Performance studies show that the par-
allel rendering process is scalable with the size of the simulation as well as with the parallel
computer. ‘

tThis research was supported by the National Aeronautics and Space Administration under NASA con-
tract NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.




1 Introduction

For many scientific and engineering problems, computational fluid dynamics (CFD) has be-
come increasingly popular as a means to gather information for design and analysis purposes.
Massively parallel computing offers both the computing power and memory space required
to attain the desired accuracy and turnaround time for CFD calculations. Traditionally,
monitoring of typical parallel CFD calculations is done by transmitting, at regular times,
a subset of the solutions back to a host computer. If the user just wants to track a few
numbers at some particular spatial positions, then only a small amount of data is trans-
ferred. However, if the user needs to analyze or visualize the overall flowfield, the amount of
data transferred could be enormous, possibly ranging from several megabytes to gigabytes.
Acquiring the whole distributed domain of data involves expensive operations. Storing and
postprocessing the data on another computer could also be problematic.

A better approach is to analyze data in place on each processor at the time of the
simulation. The locally analyzed results, which are usually in a more economical form, e.g.
a two-dimensional image, are then combined and sent back to a host computer for viewing.
Scientific visualization is an effective data analysis method making use of computer graphics
techniques, and volume rendering has been recognized as one of the most direct ways for
visualizing three-dimensional data. This paper describes the design of a parallel volume
rendering (PVR) library which renders in-place distributed data on a rectilinear grid. There
are special considerations for such design and implementation. In this paper, our discussion
focuses on the PVR algorithm. In [1], a thorough discussion is given for the library design
of a parallel polygon renderer.

We performed tests for runtime visualization of a three-dimensional Navier-Stokes solver
on the Intel Paragon XP/S using from eight to 216 processors. The interactive visual response
achieved is found to be very helpful. The realistic pictures of the overall or partial flowfield
help not only monitor but also understand the simulation. Performance studies show that
the parallel rendering process is scalable with the size of the simulation as well as with the
parallel computer. Although our current implementation only handles data on rectilinear
grids, the em design principles of the library can be generalized to handle unstructured or
curvilinear grids as well. A PVR algorithm developed for unstructured-grid data is described
in another paper [3].

2 Volume Visualization

Direct volume rendering is a powerful visualization technique. It can render the flowfield
realistically as a semi-transparent gel or smoke-like cloud. However, direct volume rendering
involves very computationally intensive calculations and slow rendering rates has limited its




use. While massively parallel computers are becoming more accessible, interactive rendering
of large data sets now can be achieved by using, for example, a 32-node intel Paragon [9] or
the more powerful IBM SP2.

There are two approaches for direct volume rendering: projection and ray-casting. For
this work, ray-casting is used because it is easier to parallelize and implement; furthermore,
it can also render cut-planes and iso-surfaces. In the ray-casting approach, an image is
constructed in image order by casting rays from the eye, through the image plane and into
the data volume. One ray per pixel is generally sufficient, provided that the image sample
density is higher than the volume data resolution. The data volume is sampled along the
ray, usually at a rate of one to two samples per voxel (volume element). At each sample, a
color and opacity is computed by interpolating from the data values. For a parallelepiped
element, there are eight vertices and trilinear interpolation is often used. The final image
value corresponding to each ray is formed by compositing, front-to-back, the color as well
as the opacity of the samples along the ray. The color/opacity compositing operation is
associative, which allows us to break a ray up into segments, process the sampling and
compositing of each segment independently, and combine the results from each segment via
a final merging step. This is the basis for our PVR algorithm [4].

3 Design Considerations for a PVR Library

The design and implementation of a software library involves several key issues such as
the application programmer interface (API), portability, performance and versatility. The
library should have a simple interface that does not intimidate the user. A good library
should mask differences across system software and hardware platforms through abstrac-
tion. Good performance is essential so the user will not be tempted to write custom code.
Ideally, a library should improve performance beyond what an average user could easily
achieve without it. Finally the library should adapt to unforeseen situations, such as low
memory restrictions, and to more sophisticated application problems. Based on the above
principles, design considerations essential to implementing a PVR library include:

e Parallelizing direct volume rendering:
o Data distribution
o Load balancing
o Memory constraints
o Scalability
o Parallel resampling
o Parallel compositing




e Portability
e Image output and display
e Library interface

Like most other parallel applications, parallelizing direct volume rendering is a divide
and conquer process. The goal is to distribute both data and computation among available
processors. There are basically two approaches for parallelizing direct volume rendering:
one is to separate the ray-casting (i.e. resampling) process from the compositing process
[4]; the other is to overlap them [9, 3]. The first approach has been selected for rendering
regular data because it is straightforward to implement and can render as efficiently as the
overlapping approach in a runtime visualization setting.

Data distribution is a problem for both the application (parallel CFD) and the visual-
ization (PVR). The design principle is to allow the application programmer to focus on the
application program instead of the rendering program. Ideally, a renderer should be able to
process local data regardless of how decomposition was done. For both parallel CFD and
PVR, it has been shown the best scalability can be achieved by decomposing the domain
in such a way as to have sizes in all dimensions as close as possible [10, 7]. For example,
three-dimensional decomposing (into blocks) is better than one-dimensional (into slabs); for
parallel CFD, block decomposition could reduce communication costs, and for PVR, ren-
dering would become less view-dependent. Currently, the renderer can handle one-, two-,
and three-dimensional decomposed data, but each data subset must contain voxels that are
spatially consecutive; this restriction can be relaxed for irregular data partitioning [3]

Load balancing is an important issue for achieving the maximum parallel efficiency. Ac-
cording to our test results, imbalanced load generally can degrade the overall performance
by 20-40%. Dynamic load balancing, if implemented efficiently, should be able to remove
at least 50% of the degradation. A few load balancing strategies for PVR have been pro-
posed which require preprocessing of the data, or specialized parallel architectures or data
distribution schemes [6, 9, §].

For time-varying data, preprocessing is generally impractical since the distribution of the
interesting part of the data can not be decided statically. For an in-place rendering library
design, implementing efficient dynamic load balancing strategy is challenging. Especially,
in a runtime visualization setting, one or more simulation time steps are typically followed
by one visualization step. The separation makes both the overlapping rendering scheme
described previously less attractive and the design of a dynamic load balancing strategy a
non-trivial task.

The rendering process is separated into local resampling and global compositing. Conse-
quently, no communication is required during the resampling process. The parallel resam-
pling algorithm is based on the author’s previous work [4] which requires replicating voxels
at boundaries. As most CFD codes use a finite-difference formulation, replication is required




anyway for a parallel implementation. Nevertheless, the replication requirement could be
removed if special care were taken to implement resampling near the boundaries.

Another important issue to consider is the memory constraints of a processor as most
applications are memory-intensive. It is usually not the case that the simulation and the
renderer can share the data. Additional memory space is needed to store the data to be
rendered, rendering parameters, and partial images. Normally, the quantities to be visu-
alized are calculated and stored separately by the application, and passed to the renderer.
Therefore, a PVR library should have moderate and predictable memory requirements so
the application programmer can plan accordingly. The amount of memory space for the

renderer is dominated by

volume_data_size + final_sub_image_size + partial_image_size
= (Nuoget/p) +4:((n/p) + (n/pz/a)) (1)

in bytes, where nyoz¢ is the total number of voxels, p the number of processors, n the number
of pixels in the final image; each voxel can take from 1 to as many as 12 bytes dependent
upon the desired data resolution and rendering algorithms used. The average size of a partial
image can be calculated as follows. Assuming the block data distribution, the average depth
overalp per pixel is p!/3. Consequently, there are a total of p'/3n partial image pixels (ray
segments), and the average number of pixels per processor is (p'/3n)/p = n/p*/®. Note that
storage for boundary replication and rendering parameters are ignored.

After the rendering step, a partial image is produced on each processor. A parallel
image compositing process then merges all partial images, in depth order, to achieve the
complete image. This global combining process requires inter-processor communication. A
direct compositing method [2, 7] has been selected for the library design, which proceeds
independently of the way in which data was partitioned. In the direct compositing method,
the image plane is subdivided and each node is assigned a subset of the total image pixels.
Each rendered pixel is sent directly to the node assigned that portion of the image plane.
Processing nodes accumulate these partial image pixels in an array and composite them in
proper order after all rendering is completed. Neumann [7] subdivided the image space In an
interleaved fashion to ensure load balancing. Other parallel image compositing algorithms
such as binary-swap developed previously by the author [4], though superior in performance,
would require regular data partitioning and the use of special data structures, and are thus
less desirable for a generic PVR library design.

The scalability of the rendering phase is generally good since no communication is re-
quired. On the other hand, the scalability of the compositing part needs to be verified since
there is some inter-processor communication involved. A performance analysis of the parallel
compositing algorithm determines the communication cost for block data subdivision on a




bidirectional torus to be
15 W p—(1/6) ‘N Lrans + C2 p5/6 * toverhead (2)

where ¢; and ¢, are positive constants smaller than 1, t;rqns is per-pixel transfer cost, and
toverhead 1S Per-message overhead. Our analysis, consistent with Neumann’s results [7], shows
that the communication cost in fact decreases as the number of processors used increases.
Thus the direct compositing method is acceptable.

At the end of image compositing, subimages are combined for storing or displaying. A
dedicated HiPPI frame buffer and Parallel I/O support, when available, can be used for
faster display rates and file I/O, respectively. In our setting, the host processor invokes a
library function responsible for collecting and combining the subimages; the final image is
displayed on a remote workstation. This results in a serial data stream which limites the
display rates. The display rates are further degraded by network latency. Image compression
techniques can be applied to alleviate these problems. In our current implementation, direct
transfer is used because most large-scale scientific simulations do not run multiple time steps
per second, even on a massively parallel computer.

Presently, the development of the library has been done on the 72-node Intel Paragon
XP/S operated at the NASA Langley Research Center. The library has been written in
C/C++ and the Intel’s native communication library NX. Better portability can be achieved
by moving to MPI or PVM. Finally, the library interface design includes both the API and
the interactive user interface for setting up the renderer. The API should be as simple as
possible. The application program passes the renderer the pointer to the subvolume, a record
describing the geometry of the subvolume, and the rendering specifications. The interactive
user interface, which has not been implemented, should allow the user to set and change
the rendering specifications including viewing and lighting parameters, image resolution,
rendering rate and transfer functions.

4 A Parallel Navier-Stokes Solver

A parallel Navier-Stokes solver has been implemented particularly for testing the PVR library
on the Intel Paragon. It allows us to experiment with different data distribution schemes
and other design criteria. The unsteady compressible Navier-Stokes equations are a mixed
set of hyperbolic-parabolic equations in time. We chose the classical MacCormack finite-
difference method [5] for the solution of the equations. This explicit, two-step, three-time
level scheme is second-order accurate in both time and space. During each time level, the first
step (predictor) calculates a temporary “predicted” value, and the second step (corrector)
determines the final “corrected” value. Forward and backward differencing are alternated
between the predictor and corrector steps to avoid any bias due to one-sided differencing and
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Figure 1: A setting for interactive monitoring.

to achieve second-order accuracy. The MacCormack method is used because it is easier to
parallelize and implement. Later, for further testing of our rendering library, we will acquire
more sophisticated CFD codes that are capable of simulating real-life problems.

The flow solver is implemented as a host-node model. As shown in Figure 1, the host
program reads in the model specifications as well as the rendering specifications, and broad-
casts them to every node processor. If the data domain is subdivided into blocks, each block
has six neighbors. At each time level, the solution values at the outermost boundary layers
of each block are exchanged between nearest neighbors after each predictor and corrector
step. “Prepare Data” is a routine written by the application programmer to calculate the
flow properties to be visualized and store in the appropriate format for rendering.

5 Test Results

For testing, the simulation models laminar flow entering a rectangular region. Flow at 100
meters per second enters a small square inlet at the left of the rectangular domain. The
domain has a full width outlet at the right end, and is otherwise enclosed by walls. No
body forces or external heat are assumed. Figure 2 presents direct volume visualization
of vorticity values of the overall simulated domain at selected time steps. To see the flow
structures appearing in these images, one must adjust either the color or the opacity mapping
to enhance a particular range of values of interest. For example, in Figure 2, regions of
high vorticity are enhanced by mapping high vorticity values to red and higher opacity
values, and low vorticity values to white and lower opacity values. The symmetric structures
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node size 8 27 64 125 216

simulation (compute) 10.665 3.1435 1.3282 0.7542 0.4109
simulation (communication) 0.0453 0.0441 0.029 0.0246 0.0199
preparing data 0.3026 0.0963 0.051 0.0670 0.0433
resampling 13.01 4.21 1.877 1.102  0.681

compositing (raw compositing) 0.151  0.0525 0.0501 0.0455 0.0310
compositing (communication) 0.106 0.080  0.0672 0.0612 0.0583

Table 1: Time Breakdown for Using Different Number of Nodes.

shown in all images verify the symmetrical boundary condition assigned. Three-dimensional
volume visualization gives us a global, realistic view of the simulated flow, and thus a better
understanding of the overall flow structures.

To evaluate the performance of both the simulation and the library, tests were performed
on the Intel Paragon XP/S by using from eight to 216 compute nodes. The performance
measures shown here were obtained by first calculating the average time over 300 time steps
for three randomly picked viewing angles at each node; then the maximum time among the
nodes is picked. Time is shown in seconds.

To see the scalability of both the solver and the rendering process, Table 1 shows time
breakdown for rendering 256 x256-pixel image on a fixed problem size of 60° data points
using various numbers of processors. Figure 3 displays the same information graphically for
revealing scalability by using log scale for both the z and y axes. As the timing results show,
the simulation scales very well and thus achieves linear speedup. It also can be predicted
that when running on a parallel system with faster processors and communication network,
interactive steering of the simulation is feasible. Note that the times for image I/O are
not shown here because our current setting for image data transfer and display could be
optimized; thus the timing results obtained are not representative.

Table 2 shows the time breakdown of one time step of the flow simulation and rendering
256 x256-pixel image using 125 nodes. Note that the raw compositing time is the average
time that each processor takes to calculate the final pixel values for its responsible subimage
area. The time a processor takes to collect all the needed ray segments from other processors
is recorded in the communication time. To show how the rendering process perform as the
problem size increases the tests were repeated for three different domain sizes: 603, 120°
and 240°. It is easy to see that simulation time dominates for typical problem sizes. From
both Table 1 and 2, we can also conclude that the rendering process scales well with the
simulation as well as the parallel system. However, the compositing times, though declining,
do not scale as good as the resampling times due to the increasing numbers of processors
used.




Figure 2. Tracking the Magnitude of Vorticity at Selected Time Steps.
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Figure 3: Timing for Both the Simulation and Runtime Visualization.

i
l

problem size 60° 1200 2403
simulation (compute) 0.7542 5.6258 44.0
simulation (communication) 0.0246 0.073  0.254
preparing data 0.067 0.261 1.485
resampling 1.102  2.054 2.845

compositing (raw compositing) 0.0455 0.044  0.044
compositing (communication) 0.0612 0.085  0.0765

Table 2: Time Breakdown for Different Problem Sizes.




6 Conclusions

If the current trend in scientific computing continues, a parallel PVR library could be very
useful to computational researchers who run their simulations on massively parallel com-
puters. Interactive visual responses reflecting simulation states and the physical phenomena
modeled allow better control of the simulation, and can offer additional insights into the
physics behind the model. The parallel rendering library described in this paper is designed
for distributed memory message passing environments. It provides an interface to handle vol-
ume data on a rectilinear grid. In CFD, rectilinear grids are still widely used but a majority
of problems of more complex geometry require the use of either curvilinear or unstructured
grids. This library can be extended to handle those grids using the algorithm described
in [3]. Important future work includes implementing dynamic load balancing strategies, a
graphical user interface, and improving image /0.
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